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This paper reports on the application of SOM to chemical spectra analysis. The Self-Organising Map
(SOM) method that was developed by T. Kohonen [1] was first applied to information processing.
Currently, it has been applied to some problems of chemical spectra analysis using AES (Auger Electron
Spectroscopy), XPS (X-ray Photoelectron Spectroscopy), and XRD (X-ray Diffraction) dara. Using a 2-
dimensional SOM, it became clear that the items that are described qualitatively by linguistic expressions
could be explained more quantitatively by the position of the spectral data on the SOM together with a grey
level expression. Also, the composition of an unknown sample can be determined very precisely by the

SOM that has been constructed using the spectra from samples of known composition.

Furthermore, this

paper addresses the attempts to develop a SOM of all the elements of the periodic table. Currently, only 77

elements have been mapped out.

1. Introduction
During the1970s, Kohonen (Kohonen et al.

[1]) developed the Self-Organising Maps
(SOMs) that simulate the brain function. SOMs
are a kind of visible neural network that has
made significant impact in many research fields
[2,3]. One of the characteristics of his network is
its ability to transform multidimensional data into
a 2-dimensional SOM. SOM was first used as an
information-processing tool in the fields of
speech and image recognition. The visualisation
characteristics of SOM have attracted many
researchers in other fields. Walker has done a
pioneering work using neural networks for
chemical multi-image analysis, where SOM is
concluded to be more suitable in handling large
dimensional problems than the usual back-
propagation method (Walker et al. [4]). Zupan et
al. [5} have discussed the application of SOM in
their book where Fig. 18-10 corresponds to the
original input data and Fig. 18-11 corresponds to
the interpolated results. With a 2-dimensional
SOM, it is possible to distinguish the difference
between similar and dissimilar information by
using a technique that illustrates the magnitude
of the distance between the units on the map.

SOM has been applied to AES, XPS, and XRD
data. For each kind of spectroscopy the SOM
was built using the abscissa of AES, XPS and
XRD spectra as the multi-dimensional
description of the shape of each spectrum.

In section 2, the SOM algorithm is briefly
reviewed with a typical example. In sections 3, 4

and 5 the results of AES, XPS, and XRD
applications of SOM are demonstrated. Finally,
section 6 discusses the attempts to develop a SOM
of all the elements of the periodic table.

2. The SOM Algorithm
A brief introduction

Based on the functions of a neuron cell of a
living thing especially the information
processing ability of the human brain, (Kohonen
et al. [1]) the following equation was developed:

mi(t +1) =m(t)+ & ()[x(t) —mt)] (1)
Consider the information processing ability that
the present neuron cell (node) i possess at time ¢

as m(?) and x(z) an input signal as shown in Fig.
1. At time t, the cell learns this input signal.

mi(1 +1)= my () + a(t)fx()- mi(1)]

Fig. 1 The relatonship between the multi-
dimensional input vector x and the reference
vector m; of (unit i),

-315-



Journal of Surface Analysis Vol. 9, No.3 (2002) H. Tokutaka et al. Application of Self-Organising Maps (SOM) ...

During the next time #+1, it has an information
processing ability of m(¢+1) which is close to the
input signal. If x(r) is an n-dimensional input
vector as shown in Fig.1, then x(#) is expressed as
x (1) =[&, & .,&]. The n-dimensional
reference vector my(t) is also expressed as myt)
= th1, Mz, .., Min]. The learning coefficient factor
a (9 has values between 0 and 1. The
neighbouring units N.(f) which surround my?)
also learn the input vector x(f) following the
same equation.Furthermore, ¢t = 0, 1, 2, .. are
discrete time co-ordinates. If an n-dimensional
input vector is presented to the SOM network,
then the reference vector in the network, which is
closest to the input vector, is selected as the best
matching node “winner”. Prior to learning, a
large reference unit area that surrounds the
winner is selected as a neighbourhood region.
The reference unit vectors in this neighbourhood
region learn the input vector x(f) as well as the
winner, following eq.1. This is a typical cycle of
the learning process. Another cycle of learning
starts when the next input vector is presented to
the SOM network. The size of the
neighbourhood region in this cycle is reduced as
compared to the last learning cycle. Thus,
learning continues until the very last learning,
where only the winner is trained by the input
vector. Kohonen was the first to introduce a 2-
dimensional SOM map from multi-dimensional
input data. This is considered in Table 1, which
distinguishes  various animals with 13
characteristics, each of which is regarded as a
dimension. The characteristics have a value of
one (1) if the animal has that particular
characteristic and zero (0) if it does not. Every
animal has a 13-dimensional input vector. When
the table is projected to a 2-dimensional SOM
with 10 x 10 neuron units, Fig.2 is obtained.
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Fig. 2 Atfer the network bas been tramed with mnputs
describing characteristic sets from Table 1, the
map was calibrated by the columns of Table 1 and
labelled correspondingly.
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As shown in the Fig.ure, it is understood that the
16 animals are distributed with similar
characteristics. For example, “birds” are on the
left side of the figure, and “carnivores” like
“tiger”, “lion”, and ‘“wolf”, are on the right.
“Herbivores” like “zebra”, “horse”, and “cow”
are placed in the upper part of the Fig.ure.

Table 1: Types of animals and their characteristics
(attributes of 4, 11 and 16 are added to ref [1]).
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3. Applications of SOM to full scanned
AES data

The results of Fig.2 are applied to the
problem of chemical analysis shown in the AES
graphs of Fig.3. In the case of Fig.2, there are
13-dimensional entities, but in AES the energy
steps on the horizontal axis are considered as the
dimensional units. The primary beam energy of
5 keV was used for all AES data. The AES data
of Fig.3 are measured from 20 eV to 982 eV by 1
eV division. Therefore, each spectrum is a 963-
dimensional input vector. The vertical axis
shows the signal size. In Table 1, signal values
were expressed as 0 and 1.
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Fig. 3 AES data of 15 materials from 20 to 1000eV.

However, in Fig.3, the normalised signal between
0 and 1 become the signal magnitudes. The
SOM for this particular case is shown in Fig.4
using a grey scale: the darker the grey the greater
the distance between the nodes. As shown in the

-316 -~



Journal of Surface Analysis Vol. 9, No.3 (2002) H. Tokutaka et al. Application of Self-Organising Maps (SOM) ...

Fig.ure, the results for CoNi alloys are
systematically arranged from Ni 100% to Co
100%. Cu follows next though there is quite
some distance between them as shown by the
grey level. Au and Ag groups follow
respectively.  Conventionally, subtracting the
background and/or separating the main peak from
several smaller peaks have interpreted Auger
spectra. The present method considers only the
spectral shape as an information source. Using
experimental AES data, the CoNi alloys are very
well separated and in a systematic order as shown
in Fig.4.

AU_STNS o

.« ALOIZ .

. CUOISS o

o Ca?sNgs .

. CUDS .

v CotENSY »

o CeBNTS

AG_D10% -

Fig. 4 2 dimensional SOM of 15 materials from AES
data of Fig.3, where STND is the abbreviation of
standard.

3.1 Quantitative application to chemical

data mining

The SOM method is used for a more
quantitative purpose using the AES data of Fig.3.
In this case, the large backgrounds, which
increase in the higher energy region, are
subtracted linearly in order to raise the LMM
signal sensitivity for CoNi alloys. The procedure
for background subtraction is shown in Fig.5.
All the normalised AES signals from 590 eV to
890 eV after background subtraction are shown
in Fig.6. In the construction of the SOM in Fig.7,
each energy step on the horizontal axis is taken
as a single dimension. The compositions of the 6
CoNi alloys shown in Fig. 3 are considered as
new dimensions between 0 and 1. CoNiS0%
alloy for example would have a dimension of 0.5.
The final dimensions are composed of the
coraposition label and the energy step of 1 eV of
the AES spectra. The normalised composition
values and the AES signals (AES signal -Min
AES signal), which are normalised by the
difference between the maximum and minimum
AES signals, are taken as the new signal values.
The SOM, which includes the composition labels,
is shown as a 20x30 sized grid in Fig.7.

Five samples of CoNi alloys Ni 100, 75, 50, 25
and 0 % were used as input signals to the SOM.
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Fig. 5 The background is subtracted linearly between
590 and 890 eV using Ni 100 % AES spectra.

After the SOM learning, all the 20X30=600 units
in Fig.7 are compared by the following error
function (Err):

Err=Y(x;~my)? €)
J=1

Where x; and m; are the j-th component value
of the n-th dimensional input data and i-th unit in
Fig.7, respectively. Using eq.3, all the 5 input
data are compared with all the 600 units.

o
ColpONi0
50 640 €80 740 70 840 €90
kinetic energy (eV)
Fig. 6 6 CoNi AES spectra with backgrounds already
subtracted linearly between 590 and 890 eV using the
method described in Fig.5.

All labelled positions in Fig.7 are determined by
the minimum values of the Error function of eq.3.
For the purposes of data mining, the Ni 55 %
specttum data is used as test data and its
composition is assumed to be unknown. Using
eq.3, all the 600 units are compared one after the
other with Ni 55 % spectra data (test data). The
unit with the lowest value of the Error function of
eq.3 is identified as the closest unit and marked
by the large coloured circle, as shown in Fig. 7.
For this experiment, the closest unit had a
composition value of 55.26 %, which is very
close to the true value of 55 %. The spectra of
the original Ni 55 % and the learned unit are
compared in Fig.8 with an error margin of 0.3.
The labelled units of the alloys are arranged in a
systematic order from 0 to 100 % as shown in
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Fig.7. The shape of Ni 100 % is a little different
from the other 5 samples. Therefore, the distance
between Ni 100 % and the other alloys in the
SOM is clearly shown in grey at the left upper
position of Fig.7.

Fig. 7 2 dimensional SOM of the 5 CoNi alloys of

AES data of Fig6 where Co45Ni55 data is

excluded from the input data in the construction
of SOM. The large coloured circle marks the unit
that corresponds to the input data spectra of
Co45Ni5Ss.

The above experiment was carried out using
other Ni alloy compositions (Ni 25 %, 50 %, and
75 %). The composition error was less than 1 %
in all cases. The spectra reproduction accuracy of
the SOM method was compared with the usual
synthesising method, where the spectra can be
built up using Co 100 % and Ni 100 %. The
accuracy estimation was carried out using the
squared error method similar to eq.3, 0.008 for
SOM and 0.025 for the usual synthesising
method. The SOM is far better than the usual
synthesising method, because any composition
data and as many data as possible can be used for
the construction of SOM.
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Fig. 8 AES spectra of the original Co45Ni55 input
data and leamed best match unit with the
composition label of 55.26 %.

4. Characteristic analysis of High-T¢
super- conducting oxides using SOM
SOM is applied to XPS data. The surfaces of
single-crystal, ceramics and thin films of Bi
based high-Tc super-conductors are cleaned
by heating and the impurities are removed.
The state of cleanliness is examined as a
change of XPS signal of oxygen (O2). The
result is shown in Fig. 9. In this case, the

binding energy of the horizontal axis is
considered as 300 points or 300 dimensions.
The vertical axis is a normalized signal
domain. The cleaved surfaces of single
crystals are heated to 400 C and are
considered as a standard clean. Using this
standard, SOM is constructed as shown in
Fig. 10. There are three kinds of peaks in
Fig. 10. These are right, split and left peaks.
These three groups are clearly found with the
dark grey valleys as shown in Fig. 10.
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Fig. 9 Changes of O-1s XPS (X-ray Photoelectron
Spectroscopy) spectra from Bi-based single crystals,
ceramics and thin films during thermal annealing

processes.
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Fig. 10 SOM classification map of Fig.9, where O-1s
XPS spectra from the air-cleaved Bi-based single
crystal surface, which is annealed for 1h at 400°C,
are used as a standard and indicated as 400°C-1.
L: annealed at low temperature, M: annealed at
medium temperature and H: annealed at high
temperature. Cera represents ceramics, sing for
single crystal and film for thin film.

Spectra with peaks to the right consist of the
heat-treated clean surfaces. Single crystals are
closest to the standard sample, which is cleaned
at 400°C. Ceramics follow next. For thin films,
the heat-treated samples at 700 and 800°C are
arranged next to the ceramics. However, spectra
that have double peak and left peak form a
cluster due to their shape. The clusters are not
separated into single crystals, ceramics or thin
films neither by their heat-treated temperatures.
It is concluded that surface impurities affect
SOM  classifications more than material
characteristics, because there are impurities left
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on the surfaces of the samples of the groups with
a double peak or a left peak.

S. Application of SOM to XRD (X-Ray

Diffraction) data

SOM is applied to other result of XRD from
thin film. The experimental data of XRD is
shown in Fig. 11. In the Fig.ure, Samples 1 and 2
are the usual experimental data from thin films.
In the same Figure, XRD results from 2212
(80K phase) and 2223 (110K phase) that are
finely identified single crystal thin films are used
as standard. It can be easily understood from the
Fig.ure that Samples 1 and 2 will not be 2212
(80K phase), since the fourth peak (around 22.5°)
does not fit these samples. The constructed SOM
is shown in Fig. 12,

1

37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20
Diffruction Angle 26 [deg}

Fig. 11 XRD (X-Ray Diffraction) pattens of Bi-based
thin films. In the experiments, the films, which
are approximately the single-phases of 110K
phase (2223) and 80K phase (2212), are used as a
standard. Samples 1 and 2 are usually obtained.

Fig.12. A SOM classification map of Fig. 11.
2212 (80K phase) is surrounded by a deep grey
level. From this result, it can be stated that both
Samples 1 and 2 are not 2212 (80K phase).
However, as shown in the Fig.ure, both Samples
1 and 2 are connected to 2223 (110K phase) with
a thin grey level, with Sample | closer to 2223
(110K phase) than Sample 2. Even though the
resistance-temperature  (R-T)  experimental
results have not been included in this article, it
should be noted that interpretation from the SOM
of Fig. 12 agrees quite well with the R-T
experimental results.

6. SOM map using all the elements in the

periodic table

It is intended to construct a SOM map using
all the elements in the periodic table. Currently
data for 77 elements in the periodic table have
been obtained. These data are magnesium
excited XPS data obtained from Ulvac-phi
company. The data were measured from 1 eV to
960 eV by 1 eV division. Therefore, each
spectrum is a 960-dimensional input vector. The
vectors were processed as in section 3.1 before
introduced to the SOM. Table 2 illustrates the 77
elements used for the SOM map of Fig. 13.

Table 2: List of the 77 XPS Mg excited elements in
the periodic table (coloured) used for the SOM of
Fig.13.

Figure 13 illustrates the SOM map for the Mg
excited XPS signals of the 77 elements of the
periodic table. The data from another database
COMPROG6 is also processed as in section 3.1
and compared to the data of Ulvac-phi in the
SOM map. The data for COMPRO6 were also
measured from 1 eV to 960 eV by 1 eV division.
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Fig. 13: SOM of the 77 XPS Al excited elements in
the periodic table

As an example, the data for Nickel (Ni) from
COMPROG is used as test data and its best match
unit identified on the SOM map of Fig. 13, which
was developed using data from ULVAC-PHL
The position of the BMU was found to be very
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close to that of Ni from ULVAC-PHI with a
mean squared error of 0.84.
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Fig. 14 Comparison of the signals from COMPRO6 and

LVAC-PHIi companies.

Fig.14 illustrates the comparison of the
signals from COMPRO6
Furthermore, Fig. 15 illustrates the two Ni
signals from COMPRO6 and Ulvac-phi. The
spectra for other elements were compared, for
instance, the comparison for iron (Fe) resulted in
a mean squared error of 1.62. Similar analysis
was done for all the other elements of the SOM
map of Fig. 13. Conventionally, Auger spectra
interpreted by subtracting
background and/or separating the main peak

have been

b

and Ulvac-phi.
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Fig. 15 Comparison of the two Ni signals from

B0 PO NO 80 560 400 N0 MO 100 @
Birirg Energy

ULVAC-PHI and COMPRO6.

from several smaller peaks. The present method
shape as
information source. If the aim of constructing a
SOM for the periodic table is achieved, then the
chemical analysis of the elements of the periodic
table can be performed using SOM. If one is
confronted with the spectrum of an unknown
element, the signal values of this element can be
used as test data and its best matching spectrum
on the map can be identified and compared with
the test data in order to identify the unknown
element. For the case of composition analysis, a
homepage is currently been developed for Iron-
Here, the composition of an
unknown spectrum can be analysed (after the
necessary pre-processing has been done) by

considers on

Nickel alloys.

ly

the

spectral

obtaining the best matching spectrum on the map
to determine the various compositions that make
up the alloy. When this is completed, it will
provide researchers with another avenue for
spectra analysis.

7. Conclusion

The SOM by Kohonen has been applied to
some problems of chemical analysis as a
preliminary examination. For CoNi alloys, the
composition labels of unknown spectra can be
estimated. Usually, results such as Fig. 3, are
explained linguistically. However, the
introduction of the SOM of Fig. 4, enables us to
make the above results more visible and describe
them more quantitatively. Thus, the position of
each spectrum on the 2 dimensional SOM,
depends on the similarity between the spectra in
the input data. The introduction of this method
has made more quantitative discussions possible
to experimental results that are described
linguistically. In chemical spectral data analysis,
the details of the spectra and the composition
analysis can be carried out using methods that
consider the physical meaning of the spectra
(Briggs et al. [6]). The analysis can also be done
by methods such as smoothing by Savitzky-
Golay, least square method, multivariate analysis,
and principal component analysis, etc. (Sasaki et
al. [7]). However, SOM is very useful as a first
stage of pre-processing before obtaining details
using the above mentioned sophisticated methods.
To examine the SOM further, the SOM map of
Fig.7 is being set up on our homepage. Any user,
who has CoNi spectra data with the backgrounds
already subtracted by the method of Fig.5, can
browse through our homepage and download the
map. Using eq.3, the user can the user can easily
find the best-fit unit of his data among the 600
units in the SOM map and obtain an estimation
of the composition of their spectra data. In the
case of the traditional method such as a
synthesising method, both pure 100 % Co and Ni
signals are needed in order to find any
composition  spectra, using the following
equation:

xCo + (1-x)Ni,

Where Co and Ni are pure 100 % materials.
Adjusting x, we can find the value of x which is
the closest synthesised spectra to the input CoNi
alloy signal. For the SOM method, we do not
need pure 100 % Co and Ni materials, all one has
to do is to follow the manual in order to subtract
the backgrounds and then normalise the input
signals.  Thus, the introduction of SOM to
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chemical analysis allows us to explore a new
development for future progress.
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